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INTRODUCTION

This work was initiated to survey the mechanical properties of a group of particulate
polymer composite explosives (refs 1 and 2) and is expanded here to include composite
propellants and other explosives (ref 3). The polymer composites are made up of polymer
binders (with plastizer in most cases) and 48% to 95% organic polycrystalline non-polymer
explosive fillers (table 1). One non-polymer composite, Composition B, and the binder for
this composite, TNT, are also considered. The general approach of the work presented
was to determine the stress versus strain properties of these composites as a function of
temperature and strain rate over the military ranges of interest. The condition of the sam-
ples after deformation was also noted, i.e., whether there was evidence of plastic deforma-
tion, cracking, and/or fracture.

EXPERIMENTAL

Stress versus strain data in compression were obtained using an MTS servo-hydraulic
system operated at constant strain rates of 0.001 to 30/s (ref 4). Samples were in the form
of right circular cylinders 1/4 in. to 1 in. in length and 1/4 in. to 3/4 in. in diameter and the
end faces of the samples were coated with a lubricant (e.g., graphite) to minimize frictional
effects between the sample and the loading platens. Samples were conditioned at tem-
peratures between -60° and 75°C for at least 2 hrs before measurements. Samples were
compressed along the cylinder axis and engineering stress and strain obtained. One to
five samples were measured at each temperature and strain rate.

Samples of the polymer composite explosives were prepared either by pressing to
size or by pressing into large billets and machining to size (refs 1, 2, and 5). The compos-
ite propellant samples were extruded, dried, and machined (refs 6 and 7) while the two non-
polymer explosive samples were cast and machined to size (ref 4). Precautions were taken
to insure that the cylinder end faces were adequately flat and parallel. The filler particle
sizes are in the micron range for all composites. The densities of all samples were meas-
ured and results are presented only for samples having densities in a narrow range close to
the maximum theoretical (zero porosity) density. In table 1, the composition of the explo-
sive and propellant composites considered are given and in addition the glass transition
temperatures, Tg, are given where known.

RESULTS

For uniaxial compression of the materials of the table, the stress initially increases
linearly with increasing strain, then curves over the passes through a maximum stress with
further increases in strain. The stress either decreases continuously for additional in-
creases in strain beyond the maximum stress at higher temperatures or decreases abruptly
to near zero at or just beyond the maximum stress at lower temperatures. Three quantities




Table 1 .
Composition of polymer composites and other materials

Binder

Name Particulate Polymer Plastizer TG(°C)
| Pax 2 HMX - 80% CAB - 8% BDNPA/F - 12% -37°
I Pax HMX - 85% CAB-6% BDNPA/F - 9% -37°
m 9404 HMX - 94% NC - 2% CEF - 3.84% -34°
v 9501 HMX - 95% ESTANE - 2.5% BDNPA/F - 2.5% -41 (B)°
\" 9502 TATB - 95% . KEL F 800 - 5% 30 (B
Vi LX-14 HMX - 95.5% ESTANE 5702-F1 - 95.5% -31(B)°
Vil M30¢ NQ - 48% NC* - 28% NG - 22% 57
Vi M43° RDX - 76% CAB/NC - 12%/4% BDNPA/F - 8%
XIX COMPB RDX - 59.5% TNT/WAX - 39.5%/1%

X TNT TNT - 100%

HMX - Cyclotetramethylene tetranitramine; TATB - 1,3,5-triamino-2,4,6-trinitrobenzene; RDX -
Cyclotrimethylene trinitramine; NQ - Nitroguanadine; TNT - Trinitrotoluene; NC - Nitrocellulose; NG
- Nitroglycerine; CAB - Cellulose acetate butyrate; BDNPA/F - Bis(2,2-dintropropyl)acetal/formal;
CEF - Tris(beta chloroethyl) phosphate; ESTANE - Poly-urethane; KEL F 800 -
Chiorotrifluoroethylene/vinylidine floride copolymer; B - Property of the binder

*Also contains 2% ethyl centralite.
®Personal communication, J. Harris, Picatinny Arsenal, NJ.
*Reference 8.

“Personal communication, G. L. Flowers, Mason & Hanger-Silas Mason Co, Inc, Pantex Plant,
Amarillo, TX.

Data taken from reference 6.
°Data taken from reference 7.

'References 9 and 10.




taken from the stress versus strain curves are of interest; the initial slope which is taken as
a measure of the modulus (E), the maximum compressive stress [the compressive strength
(om)], and the strain at the maximum stress (em).

Linear relationships between o, and E and a constant €, were found for all materials
with changes in temperature and strain rate. However, the temperature (and strain rate)
ranges for this linearity between 6, and E, and constant ¢, vary with the material. For com-
posites llI, IV, V, and VII (group A), this linear range and constant €, covers approximately
the whole measured temperature (and strain rate) range from -45° to 75°C, while for com-
posites |, lI, VI, and Vil (group B), the linear relationship and constant ¢, are only valid
from approximately 0° to 65°C. The linear relationship is also observed for composite IX
and TNT (X) from 20° to 60°C, the only temperature range for which data is available at this
time. These results are illustrated in figures 1 and 2 for composite lll. A more detailed
report containing the results for all of the composites and other explosives will be published
at a later date. o, and E change by at least an order of magnitude over the linear range of
figure 1, while the data of figure 2 indicates that e, is approximately constant for these
same conditions. The larger scatter in the data of figure 1 at low temperatures compared to
the higher temperatures is associated with increased brittieness at the lower temperatures.
The results for the other composites of group A are similar to those of figures 1 and 2. The
results for the other materials are similar to those of figures 1 and 2 for the high tempera-
ture range (above 0°C), but for the composites of group B in the low temperature range
(below 0°C) o, lies below an extrapolation of a straight line through the high temperature
points of plots similar to that of figure 1. In addition, €, for group B is smaller in the low
temperature range than in the high temperature range (fig. 2). Data is available for at least
four strain rates for composites Ii, 1lI, IV, V, and VI; several strains rate for composite |I; two
strain rates for composites IX and TNT; and one strain rate for composites |, VI, Vil, and
VIII.

From the stress versus strain curve, the relationship between three quantities om, E,
and g, can be shown to be

Om=Een/(1+a) 1)

where (1 + &) o, is the stress at which the straight line through the initial linear portion of
the stress versus strain curve, the slope of which defines E, intersects a constant strain line
aten (ref 2). a is a measure of the shape of the stress versus strain curve between the
point where it deviates from the initial straight line and the point of maximum stress. A
linear relationship between o, and E and a constant ¢, then requires (1 + a) to be constant
to satisfy this equation. While the parameter a does change somewhat with temperature,
the magnitudes and changes in a are such that equation 1 is satisfied by data of the type of
figures 1 and 2 for all of the materials of the table within the precision of the measurements
and within the temperature limits given previously.




At the lowest temperatures all polymer composites give evidence of abrupt fracture,
i.e., an abrupt decrease of the stress with increasing strain at strains equal to or greater
than the strain at the maximum stress. In addition--at the lowest temperatures--composites
I, II, VII, and VIl fracture-fragment into many many pieces, while composites lil, IV, V, and
Vl fracture into several pieces. At the highest temperatures, in contrast, all polymer com-
posites deform extensively in a plastic like manor and do not show the abrupt decrease of
stress with increasing strain. At the highest temperatures--composites I, I, VI, and VIiI
exhibit some cracking at large strains while composites Ill, IV, V, and VI tend to fracture at
large strains. The transition from the low to high temperature behavior is gradual with
increasing temperature and is somewhat strain rate dependent. Composite V, which has a
significantly higher Tg than the others, shows the transition from the low to high tempera-
ture behavior at a higher temperature. Data is not available in the low temperature range
for composite XIX and TNT, but at the higher temperatures these materials fracture into
several pieces without giving evidence of extensive plastic deformation (ref 4).

For composites of group B, the high temperature range, as discussed here, corre-
sponds approximately to the temperature range of constant ¢, and proportionally between
om and E. In contrast, the strain is constant over the whole temperature range measured
for composites of group A. In addition, o, is proportional to E over most of the temperature
range for this group of composites. Therefore, most of the group that fragment into many
many pieces at low temperatures do not have a constant strain or o, proportional to E in
the low temperature range, while most of the group that fracture but do not fragment do
have a constant strain and o, proportional to E over most of the temperature range.

DISCUSSION

There are several possible approaches to interpreting these results. In one approach,
the condition for failure is taken as a strain and e, a measure of this strain. Consider that
failure initiates at the point where the stress versus strain curve deviates from linearity in
the initial portion of the stress versus strain curve and that at this point the stress and strain
are o and &.. oy, and em are then taken as measures o; and ;. This corresponds to ap-
proximately a 1% offset condition for most of the materials. The critical condition for failure
is therefore a strain and not a stress as is the more usual case. This critical strain (or dis-
placement) for failure could be due, for example, to a critical strain (or displacement) for
irreversibly detaching the filler from the binder (interface failure) in the composites, or to
other irreversible separations which do not depend on temperature and strain rate. Be-
cause ¢ (and so em) is constant, o (and so o) is proportional to E, and since E changes
with temperature and strain rate as expected for a viscoelastic material, 6, has the same
temperature and strain rate dependencies. Another way of viewing this process is to con-
sider that the critical condition for failure is the stress necessary to produce a critical strain
(or displacement), and this stress varies with temperature and strain rate because the criti-
cal strain is constant and the modulus varies with these parameters.




In another approach to interpreting these results, the stress is taken as the condition
for failure as is the more usual case. However, the failure process (e.g., yield) must be
such that the failure stress or (and so o) is proportional to the modulus. Therefore, & (and
SO em) Will be constant. An example of this is the yield of glassy polymers at very low tem-
peratures where the tensile yield strength is predicted and found to be proportional to the
modulus with a proportionality constant between approximately 0.019 and 0.13 (refs 11 and
12). In contrast, the results here are for polymer-particulate composites primarily above Tg
in compression with proportionality constants between 0.009 and 0.05.

G. A. has also observed an insensitivity of the failure strain to strain rate for M30
propellant (table 1) and has used a nonlinear viscoelastic model with damage to describe
these results (ref 13). By fitting the model to the constant strain rate stress versus time
data at the two extremes of strain rate, he has shown that the model correctly predicts the
stress versus time data at two intermediate strain rates. The model gives a constant e, and
correctly predicts other features of the data including the observed dependence of ., on
strain rate. The model also indicates that the damage function is constant at e, as strain
rate changes. However, the model does not appear to fit the data very well in the initial
increasing stress portion of the stress versus time and so strain curves, and so the ob-
served moduli are not apparently predicted. Additional work is required to determine if the
model gives a constant e, as temperature is varied, and to apply the model to the other
materials of the table.

Additional work is also required to determine the failure mechanism and so to distin-
guish between these or other approaches to failure. The results for composite IX and TNT
indicate that the type of results obtained here are also valid for crystalline non-polymer
organic materials. Because the results are similar for composite IX and the binder for this
composite, TNT, it is probable that they are not attributable to interfacial failure in this com-
posite, but rather to failure in the binder. Failure in this composite and in this binder are
discussed elsewhere (ref 4). Further discussion of the failure mechanisms in all of the
materials of the table will be given at a later date in another report.

The immediate practical importance of this work lies in the immense simplification to
modeling mechanical failure in these materials by being able to use a strain criterion (for
failure) which is constant over a wide range of temperatures and strain rates rather than a
stress criterion which changes significantly with these two variables. In addition, evidence
for a strain criterion for failure should stimulate theoretical work and additional experimental
work. :
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Figure 1
Compressive stength (o) versus modules (E) for composite 111
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